High-Velocity Hurricane Zone Uniform Permit Application Form

INSTRUCTION PAGE

COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphalitic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1.2.3.4.5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

ATTACHMENTS REQUIRED:

1. Fire Directory Listing Page

2. From Notice of Acceptance:
 Front Page
 Specific System Description
 Specific System Limitations
 General Limitations
 Applicable Detail Drawings

3. Design Calculations per Chapter 16, or If Applicable, RAS 127 or RAS 128

4. Other Component Notice of Acceptances

5. Municipal Permit Application

6. Owners Notification for Roofing Considerations (Re-Roofing Only)

7. Any Required Roof Testing/Calculation Documentation
Are there Gas Vent Stacks?
- Yes
- No

Type: Natural
- LPGX

ROOF CATEGORIE
- Low Slope
- Asphallic Shingles
- Mechanically Fastened Tile
- Metal Panel/Shingles
- Mortar/Adhesive Set Tile
- Wood Shingles/Shakes
- Prescriptive BUR-RAS 150

ROOF TYPE
- New Roof
- Re-Roofing
- Recovering
- Repair
- Maintenance

ROOF SYSTEM INFORMATION
Low Slope Roof Area (SF) Steep Slop Roof Area (SF) Total (SF)

Section B (Roof Plan)
Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Sloped Roof System)

Fill in Specific Roof Assembly Components and Identify Manufacturer
(If a component is not used, identify as “NA”)

System Manufacturer:__________________________

NOA No.:____________________________________

Design Wind Pressures, From RAS 128 or Calculations:
Pmax1:______ Pmax2:______ Pmax3:______

Max. Design Pressure, From the Specific NOA System:__________________________

Deck:
Type:__________________________

Gauge/Thickness:__________________________

Slope:____________________________________

Anchor/Base Sheet & No. of Ply(s):__________________________

Anchor/Base Sheet Fastener/Bonding Material:__________________________

Insulation Base Layer:__________________________

Base Insulation Size and Thickness:__________________________

Base Insulation Fastener/Bonding Material:__________________________

Top Insulation Layer:__________________________

Top Insulation Size and Thickness:__________________________

Top Insulation Fastener/Bonding Material:__________________________

Base Sheet(s) & No. of Ply(s):__________________________

Base Sheet Fastener/Bonding Material:__________________________

Ply Sheet(s) & No. of Ply(s):__________________________

Ply Sheet Fastener/Bonding Material:__________________________

Top Ply:__________________________

Top Ply Fastener/ Bonding Material:__________________________

Surfacing:__________________________

Fastener Spacing for Anchor/Base Sheet Attachment

Field: ___" oc @ Lap, # Rows ___ @ ___" oc
Perimeter: ___" oc @ Lap, # Rows ___ @ ___" oc
Corner: ___" oc @ Lap, # Rows ___ @ ___" oc

Number of Fasteners Per Insulation Board

Field ______ Perimeter ______ Corner ______

Illustrate Components Noted and Details as Applicable:
Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter- Flashing, Coping, Etc.
Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturers Details that Comply with RAS 111 and Chapter 16.
Section D (Steep Sloped Roof System)

Roof System Manufacturer: ____________________________

Notice of Acceptance Number: ________________________

Minimum Design Wind Pressures, If Applicable (From RAS 127 or Calculations):

P1: _______ P2: _______ P3: _______

Maximum Design Pressure
(From the NOAA Specific System): ____________________________

Method of tile attachment: ____________________________________

Steep Sloped Roof System Description

Deck Type: ___

Type Underlayment: ___________________________________

Insulation: ___

Fire Barrier: ___

Ridge Ventilation? _____________________________________

Fastener Type & Spacing: ________________________________

Adhesive Type: _______________________________________

Type Cap Sheet: _____________________________________

Mean Roof Height: _____________________________________

Roof Covering: _______________________________________

Type & Size Drip Edge: _________________________________
Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compared the values for M_r with the values from M_r. If the M_r values are greater than or equal to the M_r values, for each area of the roof, then the tile attachment method is acceptable.

Method 1 “Moment Based Tile Calculations Per RAS 127”

\[
(P_1: \text{____}_x \lambda: \text{____} = \text{____}) - Mg: \text{____} = M_{r1} \quad \text{NOA } M_r
\]

\[
(P_2: \text{____}_x \lambda: \text{____} = \text{____}) - Mg: \text{____} = M_{r2} \quad \text{NOA } M_r
\]

\[
(P_3: \text{____}_x \lambda: \text{____} = \text{____}) - Mg: \text{____} = M_{r3} \quad \text{NOA } M_r
\]

Method 2 “Simplified Tile Calculation Per Table Below”

Required Moment of Resistance (M_r) From Table Below \hspace{2cm} \text{NOA } M_r

<table>
<thead>
<tr>
<th>Mean Roof Height</th>
<th>$15'$</th>
<th>$20'$</th>
<th>$25'$</th>
<th>$30'$</th>
<th>$40'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2:12$</td>
<td>34.4</td>
<td>38.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td>$3:12$</td>
<td>32.2</td>
<td>34.4</td>
<td>36.6</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>$4:12$</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td>$5:12$</td>
<td>28.4</td>
<td>30.1</td>
<td>31.6</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>$6:12$</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td>$7:12$</td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compared the values for F_r with the values for F_r. If the F_r values are greater than or equal to the F_r values, for each area of the roof, then the tile attachment method is acceptable.

Method 3 “Uplift Based Tile Calculations Per RAS 127”

\[
(P_1: \text{____}_x l: \text{____} = \text{____}_x w: \text{____} = \text{____}) - W:\text{____}_x \cos \theta: \text{____} = F_{r1}: \text{____} \quad \text{NOA } F_r
\]

\[
(P_2: \text{____}_x l: \text{____} = \text{____}_x w: \text{____} = \text{____}) - W:\text{____}_x \cos \theta: \text{____} = F_{r2}: \text{____} \quad \text{NOA } F_r
\]

\[
(P_3: \text{____}_x l: \text{____} = \text{____}_x w: \text{____} = \text{____}) - W:\text{____}_x \cos \theta: \text{____} = F_{r3}: \text{____} \quad \text{NOA } F_r
\]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>D_P</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>H</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>θ</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>A_a</td>
<td>NOA</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>M_r</td>
<td>NOA</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>M_t</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>M_r</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>F_r</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>F_r</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>W</td>
<td>NOA</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>l: length, w: width</td>
<td>NOA</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the Building Official at the time of permit application.
1524.1 Scope. As it pertains to this section, it is the responsibility of the roofing contractor to provide the owner with the required roofing permit, and to explain to the owner the content of this section. The provisions of Chapter 15 of the *Florida Building Code, Building* govern the minimum requirements and standards of the industry for roofing system installations. Additionally, the following items should be addressed as part of the agreement between the owner and the contractor. The owner’s initials in the designated space indicates that the item has been explained.

1._______ **Aesthetics-workmanship.** Reserved.

2._______ **Renailing wood decks.** When replacing roofing, the existing wood roof deck may have to be renailed in accordance with the current provisions of Chapter 16 (High-Velocity Hurricane Zones) of the *Florida Building Code, Building*. (The roof deck is usually concealed prior to removing the existing roof system.)

3._______ **Common Roofs.** Reserved.

4._______ **Exposed ceilings.** Exposed, open beam ceilings are where the underside of the roof decking can be viewed from below. The owner may wish to maintain the architectural appearance; therefore, roofing nail penetrations of the underside of the decking may not be acceptable. The owner provides the option of maintaining this appearance.

5._______ **Ponding Water.** Reserved.

6._______ **Overflow Scuppers (wall outlets).** It is required that rainwater flow off so that the roof is not overloaded from a buildup of water. Perimeter/edge walls or other roof extensions may block this discharge if overflow scuppers (wall outlets) are not provided. It may be necessary to install overflow scuppers in accordance with the requirements of: Chapters 15 and 16 herein and the *Florida Building Code, Plumbing*.

________________________ __________________ __________________
Owner’s/Agent’s Signature Date Contractor’s Signature

FLORIDA BUILDING CODE – BUILDING, 6TH EDITION (2017)